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Abstract: Urban air quality is a major problem for human health and green infrastructure (GI) is one of
the potential mitigation measures used. However, the optimum GI design is still unclear. The purpose
of this study is to provide some recommendation that could help in the design of the GI (mainly, the
selection of locations and characteristics of trees and hedgerows). Aerodynamic and deposition effects
of each vegetation element of different GI scenarios are investigated. Computational fluid dynamics
(CFD) simulations of a wide set of GI scenarios in an idealized three-dimensional urban environment
are performed. In conclusion, it was found that trees in the middle of the avenue (median strip)
reduce street ventilation, and traffic-related pollutant concentrations increase, in particular for streets
parallel to the wind. Trees in the sidewalks act as a barrier for pollutants emitted outside, specifically
for a 45◦ wind direction. Regarding hedgerows, the most important effect on air quality is deposition
and the effects of green walls and green roofs are limited to their proximity to the building surfaces.

Keywords: air pollution; computational fluid dynamics (CFD) model; green infrastructure (GI); street
trees; hedgerows; green walls; green roofs; traffic-related pollution; urban environment

1. Introduction

Air pollution is one of the major environmental threats to human health [1], especially
in urban areas, due to the high pollution levels recorded and the high (and increasing)
percentage of population living in cities. Because of this situation, the urban population is
usually exposed to atmospheric pollution exceeding air quality standard [2], and different
air pollution mitigation measures have been developed for improving urban air qual-
ity. These measures are based on pollutant emission reduction (e.g., traffic low emission
zones—LEZ) [3–6] and on passive mitigation strategies (e.g., green infrastructure—GI,
photocatalytic materials, etc.) [7–11]. Green infrastructure (GI) is one of the most used
passive control systems for air pollution in street canyons, although the optimum GI design
is currently unclear [12].

Interactions between atmosphere and urban obstacles (e.g., buildings, trees, etc.) in-
duce complex flow patterns in the urban canopy and reduced ventilation in the streets [13].
This fact, linked with traffic emissions, which are released at ground level, produces high
levels of pollution and strong gradients of pollutant concentrations [14,15]. Therefore,
estimating population exposure to atmospheric pollution and the impact of mitigation
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measures remains a major challenge [16–18]. Measurements recorded in urban environ-
ments (e.g., data from air quality monitoring stations) have limited spatial representative-
ness [19,20] and studies at high spatial resolution at street level are needed [21–24].

GIs provide different regulating services and disservices, such as microclimate regula-
tion, absorption and deposition of atmospheric pollutants, variation of pollutant dispersion,
emissions of biogenic volatile compounds and pollen, and noise attenuation [25–29]. In
particular, the main effects on air quality are:

- Aerodynamic effects. The vegetation acts as a porous obstacle that modifies wind flow.
- Deposition of pollutants: a fraction of pollutants is removed from air by means of

deposition on vegetation leaves and absorption through stomata.
- Biogenic emissions.

Air pollution is always improved by deposition effects; however, the impact of aerody-
namic effects on air quality is more complex and can be positive or negative. The influence
of different GI options on the air quality in street canyons depends on street-canyon geome-
try, meteorological conditions, and vegetation characteristics [12]. For open-road conditions,
vegetation barriers have demonstrated their effectiveness to improve air quality and reduce
population exposure to atmospheric pollutants [27,30–33]. However, the effects of GI are
more complex in a street environment. Trees in streets, in general, reduce street ventila-
tion and lead to increased concentration at pedestrian level [12,23,27,34–37], although air
pollution improvements in streets have been reported under certain conditions [36,38,39].
Yet few studies have investigated the relative contribution of aerodynamic and deposition
effects [28]. In street environments, most studies found aerodynamics effects were generally
more significant than deposition effects [34–36,40–42]; however, both effects can have major
impacts under certain conditions [36,41,43,44]. On the other hand, the performance of
hedgerows for improving air quality is dominated by their ability to remove from the air
pollutants emitted by local sources [27]. Hedgerows in the street can reduce pedestrian
exposure to pollutants [45,46] and that reduction depends on the aspect ratio of the street
canyon [47]. However, a deterioration of air quality was also reported by [34]. Concerning
green walls and green roofs, only a few studies investigated their air quality improvements
in street canyon environment and a wide range of reductions was reported [27,48–50].
Overall, the most appropriate approach for vegetation and especially for trees in urban en-
vironments is “the right tree in the right street” [28]. Research studies have been addressed
to investigate the effects on air quality of different GIs (e.g., [34,51]). The complexity of
urban meteorology at street level and the limited availability of studies makes it difficult to
provide holistic recommendations [12].

In this context, the present study is a step forward in improving the understanding
of the effect of GI on traffic-related pollutant concentrations within an urban area. The
objective is to provide some recommendations that could help in the design of the GI
(mainly, the selection of locations and characteristics of trees and hedgerows). For this
purpose, several novel aspects are included in the study:

- A wide set of GI scenarios is investigated through computational fluid dynamics
(CFD) simulations over an idealized three-dimensional layout of streets. This allows
for the determination of the optimal configuration of the GI (combining different
elements) to improve air quality and the contribution of each element (location of
trees and hedgerows, tree height, and the effects of green walls and green roofs).

- Not only the area with the GI was simulated, but also the surrounding streets. There-
fore, the effects of the GI on both the pollutant emitted in the study area with vegetation
and the pollutant emitted outside were investigated.

- The relative contribution of deposition and aerodynamic effects of each GI element on
pollutant concentrations is studied, analyzing distinct deposition velocities.

The GI scenarios, study urban area and CFD model are described in Section 2. The
results of the impact of location of GI elements, the height of trees, and the effects of green
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walls and green roofs are shown in Sections 3.1, 3.2, and 3.3, respectively. The discussion
and conclusions are presented in Section 4.

2. Materials and Methods
2.1. Description of Urban Geometry and GI Scenarios

CFD modelling is used to assess the impact of different GI scenarios on air quality in
an urban environment of high-rise buildings separated by avenues. This approach allows
for the investigation of a wide set of vegetation configurations, analyzing deposition and
aerodynamic effects, and the effectiveness of the layout of each GI element (street trees,
hedgerows, green walls and green roofs) to reduce air pollution.

The urban environment studied is composed by an array of 7 × 7 buildings (Figure 1).
Building height (H) is 35 m and the ratio between the building height and street width
(W) is 1. The dimensions of the urban area simulated are 455 m × 455 m and the ratio
of plan built area occupied by buildings to the total area under consideration (packing
density) is 0.25. This is an idealized urban configuration of high-rise buildings separated
by avenues resembling a real neighborhood (e.g., the packing density is within the range
of planar area indexes that typically occur in urban areas) [52]. Different types of GI
composed by different combinations of street trees and hedgerows in the sidewalks and
in the middle of the avenues (median strip) are implemented in the central area of the
neighborhood (Figure 1, Table 1). Besides the effects of the different GI scenarios on the
pollutant emitted in the study area with vegetation, this allows for the investigation of the
barrier effect on pollutants emitted outside the area. In addition, scenarios with green walls
and green roofs are also studied. Nineteen different GI scenarios are simulated for 2 wind
directions (0◦ and 45◦). To estimate their impact on air quality, the results of these scenarios
are compared with those obtained for the BASE cases where GI is not implemented. Tall
trees with two different heights are studied (15 m and 10 m). The sizes of crowns are
defined, considering some of the real limitations of planting trees in streets (separation
with façade, separation between trunks, no invasion of the road, etc.). The studied crowns
cover from 4 m height to 15 m height or to 10 m height, depending on the tree height.
The horizontal diameter of the crown is 6 m. Trees are located in a row in the sidewalks
and/or in the median strip, with a separation between trunks of 8 m. In addition, there
is a separation between crowns and building walls of 0.5 m. A leaf area density (LAD)
of 0.5 m2 m−3 is considered (LAI = 7.5 and 5), where LAD and LAI are defined as the
leaf area per unit volume or per unit projection area on the ground, respectively. Those
values are within the range of typical LAD of urban trees [27,28]. Hedgerows are 1.5 m
height and 2 m width when they are in the median strip. However, for hedgerows placed
in the sidewalks, their widths are 1.5 m to save space for pedestrians. LAD of hedgerows is
4 m2 m−3 [27,32]. Green walls are implemented in the central building of the neighborhood
on the surface of the façade without windows, and a green roof on the roof surface of this
building (Figure 1c). The aerodynamic effects of green walls and green roofs are neglected,
and deposition is estimated considering a leaf area index (LAI) of 1 [48,53].

Table 1. Description of the 19 GI scenarios investigated.

Scenario Sidewalk GI Median Strip
GI

Green Roof and
Green Walls

BASE NO NO NO

BASE_GRGW NO NO YES

VEG_1 15 m height trees Hedgerows NO

VEG_1_T10 m 10 m height trees Hedgerows NO

VEG_1_GRGW 15 m height trees Hedgerows YES

VEG_2 15 m height trees NO NO

VEG_2_T10 m 10 m height trees NO NO
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Table 1. Cont.

Scenario Sidewalk GI Median Strip
GI

Green Roof and
Green Walls

VEG_2_GRGW 15 m height trees NO YES

VEG_3 15 m height trees 15 m height trees +
hedgerows NO

VEG_3_T10 m 10 m height trees 10 m height trees +
hedgerows NO

VEG_3_GRGW 15 m height trees 15 m height trees +
hedgerows YES

VEG_4 15 m height trees 15 m height trees NO

VEG_4_T10 m 10 m height trees 10 m height trees NO

VEG_4_GRGW 15 m height trees 15 m height trees YES

VEG_5 15 m height trees +
hedgerows Hedgerows NO

VEG_5_T10 m 10 m height trees +
hedgerows Hedgerows NO

VEG_5_GRGW 15 m height trees +
hedgerows Hedgerows YES

VEG_6 NO 15 m height trees NO

VEG_6_T10 m NO 10 m height trees NO

VEG_6_GRGW NO 15 m height trees YES

2.2. CFD Modelling Set-Up

CFD simulations are based on Reynolds-averaged Navier–Stokes equations with real-
izable k-ε turbulence model, where k is the turbulent kinetic energy and ε is the dissipation
rate of turbulent kinetic energy. The equations are solved with the commercial software
STAR-CCM+ version 15.04.010 [54]. Pollutant is considered non-reactive, and its dispersion
is simulated by means of a transport equation of a passive scalar with a Schmidt number
of 0.3 [40,41]. In the present study, only traffic emissions are considered, which are homo-
geneously distributed along the streets where two roads with three lanes are modelled
(in red in Figure 1). Since the objective is to investigate traffic-related pollutants, results
can be extrapolated to nitrogen oxides (NOx) or particulate matter (PM). However, some
characteristics of the pollutant should be considered, for instance, that the deposition is
greater for PM than for NOx. Aerodynamic effects of GI are modelled through a sink term
in the momentum equations (Sui, Equation (1)) and sink/source terms in the turbulence
equations for k (Sk, Equation (2)) and for ε (Sε, Equation (3)) proportional to LAD [28].

These terms are defined as:

Sui = −ρLADcdUui, (1)

Sk = ρLADcd

(
βpU3 − βdUk

)
, (2)

Sε = ρLADcd

(
Cε4βp

ε

k
U3 − Cε5βdUε

)
, (3)

where ρ is the air density, cd is the sectional drag coefficient for vegetation (0.2), U is the
wind speed, and ui is the velocity component in direction i, βp is the fraction of mean kinetic
energy converted into turbulent kinetic energy, βd is the dimensionless coefficient for the
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short-circuiting of turbulent cascade, and Cε4 and Cε5 are model constant. βd, Cε4 and Cε5
are computed based on analytical expressions of [55] with βp = [19,41,56]:

βd = C0.5
µ

(
2
α

) 2
3

βp +
3
σk

, (4)

Cε4(= Cε5) = σk

(
2
σε

−
C0.5

µ

6

(
2
α

) 2
3
(Cε2 − Cε1)

)
, (5)

where Cε4 = Cε5 and α, Cµ, σk, σε, Cε1, Cε2 are 0.05, 0.09, 1, 1.3, 1.44, 1.92.
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Figure 1. (a) Numerical domain. (b) Zoom in 7 × 7 buildings. (c) Details of location of green wall
and green roofs. (d) VEG_1 scenario (top: side view; bottom: top view). (e) VEG_2 scenario (top: side
view; bottom: top view). (f) VEG_3 scenario (top: side view; bottom: top view). (g) VEG_4 scenario
(top: side view; bottom: top view). (h) VEG_5 scenario (top: side view; bottom: top view). (i) VEG_6
scenario (top: side view; bottom: top view).
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The dry deposition of pollutant to vegetation is modelled by means of a mass sink in
the transport equation (Sd, Equation (6)) proportional to LAD, deposition velocity (Vdep),
and concentration of pollutant (C(x,y,z)) at location of vegetation (x,y,z).

Sd = −LAD VdepC(x, y, z), (6)

To investigate the relative contribution of aerodynamic and deposition effects, GI
scenarios are simulated for three different depositions (Vdep = 0, 0.01 and 0.05 m s−1).
Deposition velocity depends on the type of pollutant and vegetation. Larger values are
for PM deposition. Many discrepancies between published values of deposition velocity
were found and the deposition velocities used in the present study are within the range of
these values [28]. The same approach for modelling the vegetation was successfully used
by [19,32,40,41,56] and it is also similar to those employed by [23,34,38].

The height of the computational domain is 11 H and the distance between lateral
boundaries and the building array is 15 H, which is in accordance with the best prac-
tice guidelines of COST Action 732 [57,58]. Buildings and ground are modelled as wall,
although the roughness for building surfaces is neglected whereas for the ground is
z0 = 0.03 m. This value is selected considering the relationship between equivalent sand-
grain roughness and aerodynamic roughness length and the first cell height close to ground
and wall limitation [59]. Zero normal velocity and zero normal gradients of all variables
(symmetry conditions) are imposed at the top of domain. At inlet boundaries, neutral
profiles of velocity, turbulent kinetic energy, and ε are established [60] (Equations (7)–(9)).

u(z) =
u∗
κ

ln
(

z + z0

z0

)
, (7)

k =
u2
∗√
Cµ

, (8)

ε =
u3
∗

κ(z + z0)
, (9)

where u* is the friction velocity and κ is von Karman’s constant (0.4). These profiles are
widely used in CFD simulation over urban environments [15,40,61]. Friction velocity is
set as u* = 0.22 m s−1, so inlet wind speed at 10 m is 3.2 m s−1, which is similar to inlet
wind speed used in other studies over real urban environment [40,62,63]. The pollutant
concentration at the inlet boundaries is considered as zero and only traffic emissions in the
numerical domain are considered.

The numerical domain is discretized using an irregular polyhedral mesh with hexahe-
dral cells close to the obstacles, emissions, and ground. Inside the building array, the size of
polyhedral cells is around 2.5 m with refinements around buildings and emission area and
two prism layers of 0.5 m around these surfaces. A grid sensitivity test is performed to se-
lect an appropriate mesh for running the set of simulations (114 simulations in total). Three
different grid resolutions are used to simulate the BASE scenario for 0◦ wind direction.
The surfaces of the central building and the emission area are meshed with refinements
of about 0.75 m, 0.5 m, and 0.25 m for the coarse, medium, and fine grids, respectively.
The growth rate of cell size from these refinements is 1.05. The total number of cells is
8.3 × 106, 11.5 × 106, and 30.7 × 106 for the coarse, medium, and fine meshes, respectively.
Streamwise velocity (U), vertical velocity (W), and turbulent kinetic energy (k) for the three
grids are compared at different vertical profiles around the central building. The results
obtained are very similar, being the flow around the buildings similar for the three meshes
(Figure S2 in Supplementary Material). The medium grid is therefore selected as a good
compromise between accuracy and computational cost.

Flow around the buildings for the BASE scenario is validated by using data from
wind-tunnel [64], which has been previously used to assess CFD simulation performance
(e.g., [18,65,66]). Streamwise velocity, vertical velocity, and turbulent kinetic energy are
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evaluated at different vertical profiles (heights below 1.5 H) located in the middle of the
central row of buildings (Section S2 in Supplementary Material). For this comparison, these
variables are normalized by using streamwise velocity and turbulent kinetic energy at 3 H.
Statistical metrics such as fractional bias (FB), the normalized mean-square error (NMSE),
the fraction of prediction that are within a factor of two of the observation (FAC2), and
the correlation coefficient (R) are computed. Their values indicate a general good model
performance with a slight underestimation of turbulent kinetic energy (Table S1 in the
Supplementary Material). All statistical metrics fall within the ranges proposed by [67] for
urban environments and the more restricted intervals proposed by [68], except for FB for k,
which is slightly out of the proposed range. These discrepancies are due to the differences
between model set-up and wind-tunnel experiment. The first difference is the size of the
building array. The modelled array has 7 rows of buildings, while the array corresponding
to the wind-tunnel experiment has 11 rows. The limit of the array can induce a slight
influence on the results in the central row of buildings, and it is different depending on
the size of the array. In the present case, the array is wide enough to these differences are
small, but they could be still visible. The second difference is due to the fact that the inlet
profiles of wind speed and turbulent kinetic energy are slightly different between the model
(Equations (1)–(3)) and the experiments. In the wind-tunnel experiment, the mean stream-
wise velocity followed a power-law profile and the experimental turbulent kinetic energy
profile was developed in the wind tunnel. Hence, these profiles are slightly different from
the neutral inlet profiles of wind speed and turbulent kinetic energy (Equations (1) and (2))
imposed in CFD simulations. The normalized results minimize the differences between
variables; however, this small influence can be still visible. Vegetation modelling cannot be
evaluated for the same GI scenarios studied in the present paper since experimental data are
not available for these configurations. However, the same vegetation modelling approach
was applied in several urban environments both in simplified and real configurations and
validated in previous studies [32,40,41,56]. Pollutant concentrations (NOx, NO2, PM10)
were also appropriately modelled in real environments with urban GI that used the same
vegetation model to simulate the effects of trees on air quality [15,19,24,62]. More details
about validation are provided in the Supplementary Material of the paper (Section S2 in
the Supplementary Material).

The methodology to assess the impact of GI scenarios on air quality consists of the
comparison of pollutant concentrations obtained for these types of GI with the concentra-
tions for the BASE scenarios, considering similar meteorological conditions. Likewise, the
effects of varying the characteristics of GI elements are evaluated comparing different GI
scenarios. Since the study is focused on population exposure, pollutant concentrations
are evaluated at pedestrian level (3 m height). A height of 3 m is selected because it is
the height of the intake systems of the air quality monitoring stations to measure pol-
lutant concentrations employed for air quality assessment. Other similar studies used
the same height [15,40,41,62]. The distribution of concentrations and spatially averaged
concentrations in a horizontal section at this height are used to assess the impacts of mul-
tiple GI scenarios at different areas covering: (1) the whole area where GI is implanted
(Neighborhood), (2) only sidewalks and crosswalks of the neighborhood (Sidewalks), and
(3) only the sidewalk around the central building (Building). To provide the results in a
more generalizable way to compare scenarios, the modelled concentration is normalized
as follow:

Cnorm(x, y, z) =
C(x, y, z)u∗

Q
, (10)

where Q is the source emission rate of traffic-related pollutant in kg m−2 s−1.

3. Results
3.1. Impact of Location of GI Elements: Aerodynamic and Deposition Effects

Firstly, the effects of the GI scenarios on the concentration of a traffic-related pollutant
(e.g., NOx, PM10) at pedestrian level are investigated. The spatially averaged concen-
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trations in a horizontal section at 3 m are computed for each GI scenario to assess these
impacts at the areas described previously covering different extension of the domain (Neigh-
borhood, Sidewalks and Building). Table 2 shows the spatial-average concentrations for the
BASE case for both wind directions (0◦ and 45◦). As it can be seen, the spatially averaged
concentrations are larger for the 45◦ wind direction. To investigate the contribution of depo-
sition and aerodynamic effects on concentrations for each scenario, the relative variation of
spatial-average Cnorm compared to BASE case, considering different deposition velocities,
is represented in Figure 2. In addition, it should be considered that concentrations depend
on wind direction.

Table 2. Spatially averaged Cnorm for the BASE case for both wind directions.

Wind Direction (◦) Neighborhood Sidewalks Building

0 1.65 1.56 1.40

45 1.84 1.73 1.99
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wind direction.

Concentrations in the study area (zone with GI implemented) depends not only on
the pollutant emissions in that zone but also on the pollutants emitted outside arriving to
this area due to wind flow. Then, the general effects of the GI implemented in this area are:
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(1) Reducing the ventilation of the streets in this area.
(2) Acting as a barrier for the pollutant emitted outside.
(3) Removing pollutant from air by means of deposition.

Figure 2 shows that the spatially averaged concentrations for VEG_3, VEG_4 and
VEG_6 scenarios are larger than those obtained for the other scenarios (VEG_1, VEG_2 and
VEG_5). This is due to the former scenarios (VEG_3, VEG_4 and VEG_6) having trees in
the median strip, which weaken the street ventilation (especially for the 0◦ wind direction),
increasing the average concentrations.

Focusing only on the aerodynamic effects (cases with Vdep = 0), for the 0◦ wind
direction, larger spatially averaged concentrations are observed for all scenarios other
than for the BASE scenario. Then, for this wind direction, the effects of reducing street
ventilation in the central area of the domain for all the GI configurations are greater than
the barrier effects for the pollutant emitted outside. For the 45◦ wind direction, the situation
is slightly different. In general, the aerodynamic effects are less important than for the
0◦ wind direction. The Neighborhood and Building spatially averaged concentrations for
VEG_1, VEG_2, and VEG_5 are slightly lower compared with the BASE scenario. This is
due to the barrier effect induced by the trees in sidewalks for the pollutant emitted outside
the central area. For both wind directions, spatially averaged concentrations for VEG_1,
VEG_2, and VEG_5, all of them with trees at the sidewalks, are similar, indicating that
the aerodynamic effects of these GI are also similar. Therefore, the street ventilation is
not affected by the hedgerows in the median strip (VEG_1) and in the sidewalks (VEG_5).
This is due to the fact that the size of hedgerows is small in comparison with the size of
the streets. To study the effects of trees in the sidewalks for the GI scenarios with trees in
the median strip, the spatially averaged concentrations for VEG_3, VEG_4, and VEG_6
scenarios are compared. The spatially averaged concentrations for VEG_6 are found to
be lower than for VEG_3 and VEG_4, for the 0◦ wind direction. This fact indicates that
adding trees in the sidewalks of VEG_3 and VEG_4 scenarios induce a larger reduction in
the ventilation in the area with GI. However, for the 45◦ wind direction, the Neighborhood
and Building spatially averaged concentrations for VEG_6 scenario are larger than those
obtained for VEG_3 and VEG_4. For this wind direction, adding trees in the sidewalks to
the ones in the median strip (VEG_3 and VEG_4 scenarios) modifies the wind flow in the
streets, acting as a barrier for the pollutant emitted outside the central area.

Concentrations for all scenarios decrease as deposition increases. For a deposition
velocity of 0.05 m s−1, all scenarios except VEG_6 induce a reduction in spatially averaged
concentrations with respect to the BASE scenario. Focusing on concentrations obtained
for Vdep = 0.01 m s−1, spatially averaged concentrations over the three areas (Neighborhood,
Sidewalks, and Building) for the VEG_5 (and in most of the cases for the VEG_1) scenario
are lower than those obtained for the BASE scenario for both wind directions. Pollutants
removed from air through deposition depend on the amount of vegetation. The presence
of hedgerows decreases concentrations (Figure 2). This fact can be observed comparing
spatially averaged concentrations for the VEG_5 and VEG_1 scenarios, and also, concentra-
tions for VEG_3 with those obtained for VEG_4. In the first case, the aerodynamic effects
of both GI scenarios are similar, however, the hedgerows in the sidewalks induce a larger
deposition for VEG_5 and consequently a more intense decrease of the spatial-average
concentrations for this scenario. In the comparison between VEG_3 and VEG_4 scenarios,
similar effect of the hedgerows in the median strip is found.

However, the effects of different types of GI in the scenarios investigated are spatially
heterogeneous. Figures 3 and 4 show maps of Cnorm at 3 m height for all the GI scenarios
without deposition and considering deposition with Vdep = 0.01 and 0.05 m s−1. It can be
observed that for some scenarios, even the spatially averaged concentration decreases, in
some, zone Cnorm increases with respect to BASE, and in others, decreases. For instance,
this behavior can be found for VEG_3 with Vdep = 0.05 m s−1 for the 0◦ wind direction.
For this scenario, the concentrations in the median strip are larger than those obtained
for BASE scenario in that zone. As previously explained, this is due to the reduction in
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ventilation induced by the trees in the median strip. In addition, it can be observed for 45◦

scenarios that the sidewalks trees act as a barrier for pollutants emitted outside the study
area, reducing the concentrations at the leeward walls of buildings.
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Figure 3. Maps of Cnorm at 3 m height for the GI scenarios investigated. (a) VEG_1 without deposition;
(b) VEG_1 with Vdep = 0.01 m s−1; (c) with Vdep = 0.05 m s−1; (d) Same as (a) but for VEG_2; (e) Same
as (b) but for VEG_2; (f) Same as (c) but for VEG_2; (g) Same as (a) but for VEG_3; (h) Same as (b)
but for VEG_3; (i) Same as (c) but for VEG_3; (j) Same as (a) but for VEG_4; (k) Same as (b) but for
VEG_4; (l) Same as (c) but for VEG_4; (m) Same as (a) but for VEG_5; (n) Same as (b) but for VEG_5;
(o) Same as (c) but for VEG_5; (p) Same as (a) but for VEG_6; (q) Same as (b) but for VEG_7; (r) Same
as (c) but for VEG_8; (s) Base scenario for the 0◦ wind direction. Arrows indicate the wind direction.



Forests 2022, 13, 1195 11 of 19

Forests 2022, 13, x FOR PEER REVIEW 11 of 19 
 

 

VEG_5; (o) Same as (c) but for VEG_5; (p) Same as (a) but for VEG_6; (q) Same as (b) but for VEG_7; 
(r) Same as (c) but for VEG_8; (s) Base scenario for the 0° wind direction. Arrows indicate the wind 
direction. 

 
Figure 4. Maps of Cnorm at 3 m height for the GI scenarios investigated. (a) VEG_1 without deposi-
tion; (b) VEG_1 with Vdep = 0.01 m s−1; (c) with Vdep = 0.05 m s−1; (d) Same as (a) but for VEG_2; (e) 
Same as (b) but for VEG_2; (f) Same as (c) but for VEG_2; (g) Same as (a) but for VEG_3; (h) Same 
as (b) but for VEG_3; (i) Same as (c) but for VEG_3; (j) Same as (a) but for VEG_4; (k) Same as (b) 
but for VEG_4; (l) Same as (c) but for VEG_4; (m) Same as (a) but for VEG_5; (n) Same as (b) but for 
VEG_5; (o) Same as (c) but for VEG_5; (p) Same as (a) but for VEG_6; (q) Same as (b) but for VEG_7; 
(r) Same as (c) but for VEG_8; (s) Base scenario for the 45° wind direction. Arrows indicate the wind 
direction. 

3.2. Impact of the Height of Trees 
The impact of the height of trees on traffic-related pollutant concentration is investi-

gated here, comparing GI with 10 m height trees and GI with 15 m height trees. 
The spatially averaged concentrations in a horizontal section at 3 m over the three 

areas (Neighborhood, Sidewalks and Building) are computed for each GI scenario with 10 m 
height trees. In order to investigate the effects of planting lower-height trees, the variation 
of these spatially averaged concentrations for GI with 10 m height trees with respect to 

Figure 4. Maps of Cnorm at 3 m height for the GI scenarios investigated. (a) VEG_1 without deposition;
(b) VEG_1 with Vdep = 0.01 m s−1; (c) with Vdep = 0.05 m s−1; (d) Same as (a) but for VEG_2; (e) Same
as (b) but for VEG_2; (f) Same as (c) but for VEG_2; (g) Same as (a) but for VEG_3; (h) Same as (b)
but for VEG_3; (i) Same as (c) but for VEG_3; (j) Same as (a) but for VEG_4; (k) Same as (b) but for
VEG_4; (l) Same as (c) but for VEG_4; (m) Same as (a) but for VEG_5; (n) Same as (b) but for VEG_5;
(o) Same as (c) but for VEG_5; (p) Same as (a) but for VEG_6; (q) Same as (b) but for VEG_7; (r) Same
as (c) but for VEG_8; (s) Base scenario for the 45◦ wind direction. Arrows indicate the wind direction.

3.2. Impact of the Height of Trees

The impact of the height of trees on traffic-related pollutant concentration is investi-
gated here, comparing GI with 10 m height trees and GI with 15 m height trees.

The spatially averaged concentrations in a horizontal section at 3 m over the three
areas (Neighborhood, Sidewalks and Building) are computed for each GI scenario with 10 m
height trees. In order to investigate the effects of planting lower-height trees, the variation
of these spatially averaged concentrations for GI with 10 m height trees with respect to
the same GI scenario with 15 m height trees for both wind directions is studied (Figure 5).
Focusing on the aerodynamic effects (no deposition), it can be observed that concentrations
for all GIs decrease as the height of trees decreases for the 0◦ wind direction. This is due to
the improvement of the ventilation in the streets as the height of trees decreases. Unlike
the 0◦ wind direction, for the 45◦ wind direction, spatially averaged concentrations for the
GI scenarios without trees in the median strip (VEG_1, VEG_2, and VEG_5) increase as
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the height of trees decreases. This is due to the decrease in the barrier effects of sidewalk
trees, which are more important for these cases, as the height of trees increases from 10 m to
15 m. As the deposition velocity increases (the deposition effects increase), the decrease in
concentrations for 10 m height trees scenarios is smaller than for 15 m height trees scenarios,
i.e., less quantity of pollutant is removed from air since there is a smaller amount of leaves.
Consequently, Cnorm for the GI with 10 m height trees is higher than for the GI with 15 m
height trees. It can be observed that for the 0◦ wind direction, the spatially averaged
concentrations for GI scenarios with trees in the median strip (VEG_3, VEG_4, and VEG_6)
are lower for 10 m height trees since the reduction in ventilation is the most important
contribution for these GI scenarios. For the 45◦ wind direction, the spatially averaged
concentrations for GI scenarios without trees in the median strip (VEG_1, VEG_2, and
VEG_5) are larger for 10 m height trees since the effect of the barrier induced by sidewalks
trees is the most important contribution.
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The effects of planting lower trees are: (1) a general improvement of the ventilation
in the streets of the central part of the neighborhood; (2) a reduction in the barrier effect
of GI with respect to the pollutant emitted outside the zone with GI; and (3) a decrease
in pollutant deposition due to the decrease in the amount of vegetation. The first point
induces a general reduction in concentrations, but the other two effects induce an increase
in concentrations.
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3.3. Impact of Green Walls and Green Roofs

Green walls and green roof are implemented in the central building and their impact
is spatially limited. Variations of spatially averaged concentrations over Neighborhood
and over Sidewalks for GI with and without green walls and green roof are negligible.
Their impacts can be only found over the sidewalk around the central building (Building).
However, the differences between scenarios are lower than 4% (Figure 6).
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4. Discussion and Conclusions

This paper studies the impact of a wide set of GI elements on traffic-related pol-
lutant concentrations at the pedestrian level within an idealized three-dimensional ur-
ban area. GI provides different benefits such as social benefits (e.g., making cities more
pleasant), economic benefits (e.g., increasing property value), microclimate regulation,
health benefits (e.g., psychological values), carbon sequestration, reducing energy use,
etc. [28,69–71]. Regarding air quality, the results of the present paper indicate, as previous
studies (e.g., [27,28]), that using GI alone is ineffective as a general air quality mitigation
measure. However, according to the approach, “the right tree (in this case, GI) in the right
street”, proposed by Buccolieri et al. [28], our results also show that, selecting appropriate
layouts of GI elements, GI can also help to reduce population exposure to air pollution even
in a scenario with high buildings such as the study area investigated here. In this paper, it
was possible to investigate the relative influence of each GI element due to the large number
of simulated scenarios performed. It is noteworthy that the recommendations proposed for
improving air quality should be considered not only to solve urban air pollution problems,
but also when GI is designed for other purposes (e.g., improving urban climate). GI design
should be addressed to obtain a trade-off solution between the different ecosystem services
and disservices provided.

Regarding the trees in the streets, this study indicates that, for almost all the cases,
the aerodynamic effects produce an increase in concentrations. Therefore, the general
population exposure to traffic-related pollutants also increases. This agrees with previous
studies (e.g., [12,23,27,34–37]). Indeed, Kumar et al. [47] recommends no trees for street
canyons with aspect ratios H/W < 2 and no forms of vegetation except green walls for
deep street canyons (H/W > 0.5). In the current study, the aspect ratio of the streets
is H/W = 1, however the building packing density is 0.25, so the length of streets is
not very long. For this three-dimensional configuration, the present study shows the
importance of the location of trees and how street trees in the right locations can reduce
pollutant concentrations at street level considering pollutant depositions. Trees in the
median strip are found to be in an adverse location. These trees produce an increase in the
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spatially averaged concentrations, in particular for the 0◦ wind direction. Focusing on local
concentrations, the larger increases in concentrations are found in streets parallel to the
wind, due to a drastic reduction in ventilation there, and as a consequence, traffic-related
pollutant are retained in that area. This fact agrees with [39] where, for parallel winds,
the concentration was found higher for an isolated street canyon with trees. In streets
perpendicular to wind direction, this effect is not so important, as even for some scenarios
with deposition, there are concentration decreases in these areas. On the contrary, the
presence of trees in the sidewalks is found as a right location. These trees are especially
good acting as a barrier for the pollutant emitted outside of the zone with implemented GI,
in particular for the 45◦ wind direction. Therefore, this fact suggests that GI implementation
combined with measures of traffic-emission reductions in the area with GI will produce the
best performance to improve air quality. However, further studies about the combination
of air pollution mitigation strategies should be investigated in the future. Regarding the
influence of the height of trees, the decrease in height induces a decrease in deposition
and aerodynamic effects. Therefore, the general impact of changing the height of trees
on pedestrian-level concentrations depends on what effect is more important for each GI
configuration.

The results of the present paper indicate that for this configuration, the street ven-
tilation is not affected by the hedgerows in both locations. Gromke and Blocken [23]
determined the crown volume fraction as key parameter on the effects of trees on pollu-
tant concentration. It was defined as the volume occupied by tree crowns within a street
canyon section. In this case, the hedge volume fraction can be defined in a similar way,
using hedgerow volume fraction. In the present study, this parameter is very small for
hedgerows since buildings are tall and the width of streets large (H/W = 1). Therefore,
for this urban configuration, the presence of hedgerows is positive for air quality due to
pollutant deposition effects, and higher the deposition velocity, the more important air
quality improvements are. This agrees with [27], that establishing the performance of
hedgerows for improving air quality is dominated by their ability to remove from the air
pollutants emitted by local sources.

Finally, the effects of green walls and green roof on spatially averaged concentrations
are found to be limited to areas around the building where both measures are imple-
mented. In addition, the reduction in concentrations is not large, and the effects of trees
and hedgerows are found to be more important. Previous studies (e.g., [48,49]) estimated
different pollutant concentrations reduction in a street canyon depending on street canyon
geometry, and LAI. Qin et al. [49] observed that larger H/W lower concentration reductions.
The reductions obtained in the present study are lower than those, which is explained by
the fact that the street ventilation in this configuration is higher than in a street canyon.
Therefore, the residence time of pollutants close to green walls is lower and, consequently,
the deposition is also lower. However, it is noteworthy that the effects of green walls
and green roof are always positive in terms of air quality since they do not reduce the
street ventilation and provide other benefits like the improvement of building energy
consumption. Therefore, as proposed Kumar et al. [47], they could be a good option for
deep street canyons.

This paper is based on numerical simulations using a previously validated CFD model
and it focuses on an idealized urban configuration of high-rise buildings. This configuration
is representative of some areas of certain cities with a regular layout of buildings. Results
obtained in this study can be extrapolated to urban environment of high-rise buildings
separated by avenues with aspect ratios around 1 and packing densities around 0.25. In
general, the real layout of a city is much more complex that the one used in this paper.
There, wind flow and pollutant dispersion are also more complex, and particular studies
for each real neighborhood are needed to investigate GI effects in detail. However, the
results of the present study can help to improve the understanding of their effects, and can
be extrapolated for certain areas of complex configurations with similar aspect ratios and
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packing densities. The impact of GI for more layouts of buildings should be addressed in
future studies.

This paper focuses on pollutants emitted by traffic, which is the main source of
pollutants in urban areas. However, GI also has an impact on pollution from other distant
sources (e.g., industrial emissions). Specifically, GI can capture part of this pollution by
means of deposition-decreasing pollutant concentration in the air. In addition, GI can
contribute to prevent those pollutants reaching the streets. Aerodynamic and deposition
effects are considered in the numerical simulations. The biochemical effects of different
vegetation on different pollutants (e.g., the absorption of certain pollutant gases) are not
explicitly modelled. However, these effects are included in the value of deposition velocity.
The purpose of this study is not to model specific species of trees, hedgerows and green
walls/roofs, and typical values of deposition velocities are used. Deposition velocities
depend on the type of pollutant and plant species. To provide more information about
this issue and the range of deposition effects, different deposition velocities have been
investigated. In addition, typical values of LAD and Cd are also used. The canopy of
different plants is also different; however, in this study, crowns with regular shape are
simulated to consider “standard” trees. The impact of location and layout of vegetation
elements is expected to be greater than the effects of the shape of crown (considering the
same quantity of vegetation), although those effects should be investigated in future studies.
Furthermore, the cost–benefit of vegetation at species level should be considered for an
appropriate plant selection for urban air quality management [33], not only with regards to
the pollutant removal capacity, but also other factors, such as emissions of pollen or biogenic
volatile organic compounds and air pollution tolerance [12]. In addition, it is necessary to
understand the suitability of each considered plant species to the environmental conditions
of the intended planting location [33].

Finally, it should be noted that this study is focused on the impact on air quality, and
the transpiration effects of plants are not considered. However, these effects can lead to
an increase in local humidity, which can further affect air pollutant such as hygroscopic
growth and particle transformation. Deposition and aerodynamic effects of GI and the
impact of location and layout of vegetation elements studied in this paper are expected
to be greater than those effects. However, they should be addressed in future studies,
specifically using field experiments, to obtain data to appropriately model these processes
in CFD simulations, which is still a challenge.

In general, future studies should address the need to perform more field experiments
to complement modelling data and help to improve simulations modelling other processes.
Future studies should focus on the design of GI from a holistic point of view that consider
the different services and disservices (air pollutant removal, improving urban climate, etc.).
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